
n15LJ. uo. I I

$@i,  (j$. ‘r’7
MISSION OPERATIONS COST REJ3UCTION

BY SOFTWARE INHERITAN41

John A. Rohr
Keyur C. Patel

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California USA
John.A.Rohr@Jpl.  Nasa.Gov

Since the initiation of deep-space
exploration in the 2 960’s by spacecraft
built by the Jet Propulsion Laboratory
(JPL), a l m o s t a l l  JPL  miss ion
operations software has been written
for and operated on mainframe
computers. In the late 1980’s ,  a
phenomenon began which would
have  a  profound ef fec t  on JPL
mission operations software: the
emergence of open systems in which
an operating system a n d  t h e
applications programs it controlled
c o u l d  r u n  w i t h  o n l y  m i n i m a l
changes on computer systems made
by different manufacturers.

At the time, mainframe computers
were becoming increasing expensive
to operate when compared with
workstations. In addition, software
written for mainframe computers
was designed to operate with a
specif ic mainframe computer
operating system. Converting such
software to another mainframe
system required considerable
resources just to convert to a
different operating system, even if
the functional program code were
unchanged. Most workstations, then
as now, support the IJNIX operating
system. Therefore, moving software
which was designed to run under the
UNIX operating system from one
works ta t ion  to  another  would
require only minimal changes to the
software due to minor differences in
the implementation of the UNIX

operating system  on a particular
vendor’s harcl}varc platform. This
open system commonality was
appealing to the designers and
implementers o f  JPL mission
operations software.

Furthermore, in the late 1980’s JPL
began to investigate the concept of
building a set of operations software
which could be used by multiple
missions and would require only a
minimal effort  for adaptation from
one mission to another. The concept
of multi mission software was
appealing to management, because
considerable savings c o u l d  b e
realized by having a core set of
software which could be mostly
reused from mission to mission with
only minor adaptation required.

The combination of the availability
and capability of workstations and
the concept of multimission  software
led to the JP1. Multimission  Software
Trans i t ion  l’rojcct (MSTP). The
project official] y began in 1993 with
an expected completion by the end of
1996. The project has two objectives.
The f irst  is  to convert  mission
operations software from mainframe
co]nputers  to UNIX workstations.
T h e  s e c o n d  i s  t o  c o n v e r t  t h e
programs in such a way that the
result ing software will be
m~]ltimission  in nature and wil l
require only minimum adaptation
from mission 10 mission.

7 7 - 1



The original scope of MSTP was the
conversion of al l  JI?L m i s s i o n
operations software which was
usable by multiple missions, and all
JPL mission operations software
which operated on UNISYS  1100
mainframe computers and was being
used by one or more missions which
would continue beyond the time that
M S T P  w o u l d  b e completed.
Accomplishment of this objective
would mean that the UNISYS 1100
mainframe computers  could be
decommissioned after completion of
MSTP,  s ince al l  software which
operated on these machines would
be converted to workstations by
MSTP. In addition, some software
which was originally designed for a
single mission or a limited set of
missions was to be modified by
M S T P  t o  b e c o m e  multimission
software which could be used by
several missions with only minimal
adaptation.

MSTP was originally scheduled to
begin in 1991. Due to a situation in
the NASA budgeting process, MSTP
did not actually start until 1993. This
two-year delay resulted in several
modifications to the original MSTP
plan.

First, at the time of the initiation of
MSTP a national  effort  was in
progress to reduce the amount of
money s p e n t  b y  t h e  f e d e r a l
government. JPI,  is operated by the
California Institute of Technology
under a contract with the National
A e r o n a u t i c s a n d S p a c e
Administration (NASA) which was
expected to participate in this budget-
reduction process. As a result, there
was a strong desire on the part of
NASA to reduce the MSTP budget
(as well as other NASA budgets). To
help N A S A  m e e t  i t s  budget-

reduction goals, the MSTP budget
was reviewed and reductions made
where feasible. S o m e  o f  t h e
reductions resulted from more
accllrate  cost estimates for specific
tasks in MST]’. Other reductions
r e s u l t e d  f r o m  e l i m i n a t i o n  o f
s o f t w a r e  w h i c h  d i d  n o t  n e e d
conversion because it would be
replaced soon by other software being
written, Additional reductions were
obtained where software conversion
to tvorkstations  was already being
funded by other sources.

The second modification to MSTP
due to the delayed start was the
deletion of conversion of mission
operations software unique  to
Galileo. 7’he Gal i l eo  miss ion ,
scheduled to complete its planned
mission by 1998, would be almost
complete by the revised completion
date of MST]’. Since much of the
Gali leo software was designed
specifically for that mission and
ope] ated on [JNISYS  mainf rame
computers, the main reason for
MSI  P to convert Galileo mission
operations software was to move it
from the UNISYS  mainframes to
lJNIX w o r k s t a t i o n  s o  t h a t  t h e
lJNISYS m a i n f r a m e s  c o u l d  b e
decommissioned. If MSTP had been
completed in 1994 as  original ly
planned, Galileo would have had
four years to  run  i t s  miss ion
operations sof tware  on UNIX
workstations. With the delay of
MSI  P, the Galileo mission would
have only two years to run its
mission operations software on
UNIX workstations. This would be
of marginal benefit since the cost of
converting mission operations
software unique to Galileo was
planned to be a significant part of the
MST]’ budget. It was determined
that a considerable savings would

‘77-2



result  if Galileo continued to run its
mission operations software on the
UNISYS  mainframes through the
duration of the planned mission
rather  than switching to UNIX
workstations. Thus, conversion of
mission operations software unique
to Galileo was deleted from MSTI’  to
save money.

The third modification to MSTP due
t o  t h e  d e l a y e d  s t a r t  w a s  t h e
incorporation of new technology
which had evolved between the
original start date and the delayed
start date. This will be illustrated in
the discussion of the replacement of
the COMSIM program below.

Thus, between the original starting
date of 1991 and the revised starting
date in 1993 when MST]’ actually
began, the cost and scope of the
project were reduced significantly,

Two specific examples illustrate how
MSTI’ will reduce the overall cost of
mission operations software: the
c o n v e r s i o n  o f t h e  S e q u e n c e
Translator program (SEQTRAN) and
the replacement of the COMSIM data
system simulator program. Two
completely different conversion
methods were used for these two
programs. SEQTRAN was converted
by translating UNISYS  mainframe
assembly-language programs to C-
language programs running under
the UNIX operating system. The
COMSIM  program was completely
replaced by an adaptation of a
rnultimission  simulator program.
The COMSIM  replacement is an
example of use of new technology.
The conversion of each of these
programs wil l  be discussed
illustrate how different methods
conversion can be used effectively
achieve cost reduction.

to
of
to

The SEQTRAN program is used to
translate spacecraft commands in the
form of mnemonic instructions with
parameters into the binary data
required onboard the spacecraft to
drive the command and sequencing
interpreter. SEQ3’RAN also includes
other functions such as management
of onboard memory and specialized
output file formatting.

SEQ3  R A N  i s  o n e  o f  s e v e r a l
prc)grams  u s e d  i n  J P L  m i s s i o n
operations to combine requests for
science activities and engineering
activities onboard the spacecraft into
a seq~~ence of events to be executed
onboard the spacecraft . The
SEQ. GEN program collects the
requests and produces a file which is
i n p u t  t o  SEQ7’RAN. This f i le
contains a list of parameterized
commands to be executed onboard
the spacecraft. SllQTRAN accepts the
input file and produces an output
file in one of  three  formats ,
depending on mission requirements.
These output files are sent to the
Command Systcm  which processes
the files to transform them into files
which are sent to the Deep Space
Network for transmission to the
spacecraft.

T w o  c h a n g e s  w e r e  m a d e  to
SEQ7 ‘RAN in addition to conversion
to operation on a UNIX workstation,
whicli will reduce the cost of future
mission operations, First ,  al l
SEQ1’RAN  versions were combined
into one. Previously, a slightly
different version of SEQTRAN was
generated for each different mission.
A l l  v e r s i o n s  h a v e  n o w  b e e n
combined and an internal routine
configures the program for the
mission beins supported. This
means that only one version of the
program will n&d to be maintained

7 7 - 3



rather than the multiple versions
which were required previously.
Second, command translation is
accomplished using a common
library provided for all programs
which need to translate commands
into bits. This function previously
required separate coding of the
translation in SEQTRAN  as well as
other mission operations programs.

Since its inception, SEQTRAN has
been  programmed and run  on
UNISYS  1100 mainframes. Because
SEQTRAN was based code inherited
from earlier work, it is written
entirely in UNISYS  1100 assembly
language. MST]’  wil l  convert
SEQTRAN  f r o m  lJNISYS 1 1 0 0
assembly language to the C language
running under the UNIX operating
system on Sun and Etewlett-Packard
workstations. To minimize cost and
schedule, SEQTRAN  was converted
to C by emulating the assen~bly-
language code rather than rewriting
each function or the entire program
completely. One other reason for
this approach was that the
programmers working o n  t h e
conversion were not familiar with
SEQTRAN before beginning the
conversion and thus did not
understand the details and
algorithms of the assembly-language
implementation.

T h e  r e s u l t  o f  t h e  SEQTRAN
conversion is a single C-language
program which supports multiple
missions, The converted program
has been tested and is currently
supporting four ]l)l., missions. The
use of  the  common command
translator will minimize the effort
required to use SHQTRAN  on new
missions and the unified version
will reduce maintenance costs in the
future.

The {; OMSIM  program is a data
system simulator for the Voyager
Project. COMSI M provides a detailed
simulation of the onboard Voyager
control computer and a functional
simulation c)f the Voyager spacecraft
environment in which the control
computer operates. COMSIM  runs
on UNISYS 1100 m a i n f r a m e
completers.

The Voyager Project has utilized the
COMSIM  simulator s ince before
launch to develop flight software
and test sequences which are to be
sent to the spacecraft. Voyager
perso] me] have also made extensive
u s e  o f  COMSIM f o r  a n o m a l y
invest igation since the launch of the
Voyager spacecraft.

Several other JI’L, missions have also
utilized data system simulators to
develop flight software, to test
sequences before sending them to the
spacecraft, and to  inves t iga te
anomalies which occur in flight.
The simulators model the onboard
control computer  hardware and
s imula te t h e s u r r o u n d i n g
envir(mrnent  so that actual flight
software can be run instruction-by-
instruction in the simulator. The
use of faster onboard processors by
recent missions generally means that
a simulation of the onboard data
system will run much slower  than
real-time.

COMSIM was originally written in a
combination of several languages.
FORTRAN was the main language
used, but assembly language was
used for simulator code which was
inherited from a Voyager simulator
written before COMSIM. Also, some
stand- alone utilities were developed
for COMSIM using languages other
than FORTRAN,

7 7 - 4



. .

The orjgjnal  plan for the conversion
of COMSIM was to convert the entjre
program to a UNIX workstation
usjng  standard FORTRAN. Since a
common language was desired for all
the code in the converted program
and s ince  the  ma jor i ty  o f  the
COMSIM c o d e  w a s  w r i t t e n  i n
FORTRAN whjch is supported on
UNIX workstations, FORTRAN was
chosen over C as the language for the
converted COMSIM  program.

Since the start of MSTP was delayed,
the conversion method for COMSIM
was reviewed before beginnjng  the
work. A research effort had been
init iated several  years a g o  t o
investigate the use of fast, multiple-
processor UNIX workstations to
build a data system simulator which
would run at least as fast as real time.
Followjng  several years of research, a
multimjssion  hjgh-speed simulator
framework has been developed to
provide a basjs  for building data
system simula tors  for  severa l
missjons. One version of the high-
speed simulator has been bujlt for
the Galileo project and another js
being built for the Cassjni  project,

Because of the success of the high-
speed simulator research effort, the
implementation of a high-speed
simulator for  Gali leo,  and the
planned implementation of a high-
speed simulator for Cassini,  jt was
decided to end the effort to convert
COMSIM to UNIX workstations and
build an adaptation of the high-speed
simulator instead. This would not
only save development funds, but it
would also give the Voyager project
a  data system sjrnulator  whjch  is
much more modern and capable
t h a n  COMSIM  as well  as  being
m a i n t a i n a b l e  in a multjrnission
mode. T h e  decisjon to use an

adaptation o f  t h e  h i g h - s p e e d
simulator rather than converting
COMSIM  is a wjn-win  situation in
which the MSIT’ reduces costs and
t h e  V o y a g e r  p r o j e c t  recejves a
simulator with more speed and
capability than would be obtained
from a conversion of COMSIM.

Thjs was not  a  straightforward
decision, however, because at the
time the decision had to be made, the
high-speed simulator had only been
used for one project (Galileo), and it
would not be completely finished
until after the development for
Voyager was to have begun. Thus
t h e r e  w a s  n o t  a n y  completely-
developed versjon  of the hjgh-speed
simulator for any real mission. Only
prototypes had been completed when
the decision had to be made as to
how to proceed for Voyager.

Nevertheless, the decjsion  was made
to use the high-speed simulator
adaptation and the adaptation was
initiated.

At the present time, the adaptation
of the high-speed simulator for
Voyager is still in progress. Early
versions have been demonstrated
and are being used by Voyager
personnel for trajning.  It is expected
that the high-speed sjmulator  will be
an even more effective tool for the
Voyager project than COMSIM.

The result of the MST1’ project is
multilnission  software which runs
on open-system workstations. The
use of multjmission  software will
result in software which is cheaper to
develop  and maintain and which
can be transferred to new, upgraded
compllter systems with minimal
effort. The final result js reduced
future mission operations cost at JPL.

7 7 - 5



. .
.’

1 1

FROM SEQGEN

I I\ \
I \ u II I

+
I I

#

LISTINGS

\ CCSMEM  i

Y) DMWF

T

CDL

I

!

FDSUT
q “1

J_
I
I

‘~ ASDFILE}

I
1

1

-1--JLISTINGS

I
I
I
I

+--,

‘ MARVEL /
I
L–____J

4
l–––.––

uEVTSDR-SCAN
MEMCHG

MERGE-FDS
IAST-VAL

1 TO COMMAND

L
I

-(-y=! OJER ~
INPUTS

I
I
I————  .—— ——— ——— ——. —————— _—

DEE:::D m“’” VOYAGER MISSION OPERATIONS
SOFTWARE FLOW DIAGRAM


